This function visualizes the feature importance as horizontal bar plot.
Examples
cboost = boostSplines(data = iris, target = "Sepal.Length", loss = LossQuadratic$new())
#> 1/100 risk = 0.31 time = 0
#> 2/100 risk = 0.29 time = 134
#> 4/100 risk = 0.25 time = 363
#> 6/100 risk = 0.21 time = 534
#> 8/100 risk = 0.18 time = 696
#> 10/100 risk = 0.16 time = 854
#> 12/100 risk = 0.14 time = 1002
#> 14/100 risk = 0.13 time = 1148
#> 16/100 risk = 0.11 time = 1292
#> 18/100 risk = 0.1 time = 1453
#> 20/100 risk = 0.095 time = 1603
#> 22/100 risk = 0.088 time = 1749
#> 24/100 risk = 0.083 time = 1893
#> 26/100 risk = 0.078 time = 2096
#> 28/100 risk = 0.074 time = 2250
#> 30/100 risk = 0.071 time = 2398
#> 32/100 risk = 0.069 time = 2544
#> 34/100 risk = 0.067 time = 2707
#> 36/100 risk = 0.065 time = 2852
#> 38/100 risk = 0.063 time = 2995
#> 40/100 risk = 0.062 time = 3142
#> 42/100 risk = 0.061 time = 3293
#> 44/100 risk = 0.06 time = 3448
#> 46/100 risk = 0.059 time = 3599
#> 48/100 risk = 0.058 time = 3744
#> 50/100 risk = 0.057 time = 3891
#> 52/100 risk = 0.056 time = 4038
#> 54/100 risk = 0.056 time = 4184
#> 56/100 risk = 0.055 time = 4329
#> 58/100 risk = 0.054 time = 4476
#> 60/100 risk = 0.054 time = 4620
#> 62/100 risk = 0.053 time = 4853
#> 64/100 risk = 0.052 time = 5044
#> 66/100 risk = 0.052 time = 5235
#> 68/100 risk = 0.051 time = 5410
#> 70/100 risk = 0.051 time = 5581
#> 72/100 risk = 0.051 time = 5760
#> 74/100 risk = 0.05 time = 5958
#> 76/100 risk = 0.05 time = 6129
#> 78/100 risk = 0.049 time = 6277
#> 80/100 risk = 0.049 time = 6429
#> 82/100 risk = 0.049 time = 6591
#> 84/100 risk = 0.048 time = 6741
#> 86/100 risk = 0.048 time = 6994
#> 88/100 risk = 0.048 time = 7181
#> 90/100 risk = 0.048 time = 7360
#> 92/100 risk = 0.047 time = 7534
#> 94/100 risk = 0.047 time = 7709
#> 96/100 risk = 0.047 time = 7882
#> 98/100 risk = 0.047 time = 8057
#> 100/100 risk = 0.046 time = 8240
#>
#>
#> Train 100 iterations in 0 Seconds.
#> Final risk based on the train set: 0.046
#>
plotFeatureImportance(cboost)
plotFeatureImportance(cboost, num_feats = 2)
plotFeatureImportance(cboost, num_feats = 2, aggregate = FALSE)