Function reference
-
BaselearnerCategoricalBinary
- Base learner to encode one single class of a categorical feature
-
BaselearnerCategoricalRidge
- One-hot encoded base learner for a categorical feature
-
BaselearnerCentered
- Centering a base learner by another one
-
BaselearnerCustom
- Custom base learner using
R
functions.
-
BaselearnerPSpline
- Non-parametric B or P-spline base learner
-
BaselearnerPolynomial
- Polynomial base learner
-
BaselearnerTensor
- Row-wise tensor product base learner
-
BlearnerFactoryList
- Base learner factory list to define the set of base learners
-
CategoricalDataRaw
- Data class for categorical variables
-
Compboost
- Component-wise boosting
-
Compboost_internal
- Internal Compboost Class
-
InMemoryData
- Store data in RAM
-
LearnerClassifCompboost
- Component-wise gradient boosting classification learner
-
LearnerCompboost
- Component-wise gradient boosting learner
-
LearnerRegrCompboost
- Component-wise gradient boosting regression learner
-
LoggerInbagRisk
- Log the train risk.
-
LoggerIteration
- Logger class to log the current iteration
-
LoggerList
- Collect loggers
-
LoggerOobRisk
- Log the validation/test/out-of-bag risk
-
LoggerTime
- Log the runtime
-
LossAbsolute
- Absolute loss for regression tasks.
-
LossBinomial
- 0-1 Loss for binary classification derived of the binomial distribution
-
LossCustom
- Create LossCustom by using R functions.
-
LossHuber
- Huber loss for regression tasks.
-
LossQuadratic
- Quadratic loss for regression tasks.
-
LossQuantile
- Quantile loss for regression tasks.
-
OptimizerAGBM
- Nesterovs momentum
-
OptimizerCoordinateDescent
- Coordinate descent
-
OptimizerCoordinateDescentLineSearch
- Coordinate descent with line search
-
OptimizerCosineAnnealing
- Coordinate descent with cosine annealing
-
ResponseBinaryClassif
- Create response object for binary classification.
-
ResponseRegr
- Create response object for regression.
-
boostComponents()
- Wrapper to boost general additive models using components
-
boostLinear()
- Wrapper to boost linear models for each feature.
-
boostSplines()
- Wrapper to boost general additive models for each feature.
-
getCustomCppExample()
- Get C++ example script to define a custom cpp logger
-
plotBaselearner()
- Visualize contribution of one base learner
-
plotBaselearnerTraces()
- Visualize base learner traces
-
plotFeatureImportance()
- Visualize the feature importance
-
plotIndividualContribution()
- Decompose the predicted value based on the given features
-
plotPEUni()
- Visualize partial effect of a feature
-
plotRisk()
- Visualize the risk
-
plotTensor()
- Visualize bivariate tensor products