This function visualizes the contribution of a bivariate tensor product.
Arguments
- cboost
(Compboost)
A trainedCompboost
object.- tname
(
character(2L)
)
Name of the tensor base learner.- npoints
(
integer(1L)
)
Number of grid points per numerical feature. Note: For two numerical features, the overall number of grid points isnpoints^2
. For a numerical and categorical feature it isnpoints * ncat
withncat
the number of categories. For two categorical featuresncat^2
grid points are drawn.- nbins
(
logical(1L)
)
Number of bins for the surface. Only applies in the case of two numerical features. A smooth surface is drawn ifnbins = NULL
.
Examples
# \donttest{
cboost = Compboost$new(data = iris, target = "Petal.Length",
learning_rate = 0.1)
cboost$addTensor("Sepal.Width", "Sepal.Length", df1 = 4, df2 = 4, n_knots = 10)
cboost$addTensor("Sepal.Width", "Species", df1 = 4, df2 = 2, n_knots = 10)
cboost$train(100L)
#> 1/100 risk = 1.3
#> 2/100 risk = 1.1
#> 4/100 risk = 0.77
#> 6/100 risk = 0.56
#> 8/100 risk = 0.43
#> 10/100 risk = 0.34
#> 12/100 risk = 0.28
#> 14/100 risk = 0.24
#> 16/100 risk = 0.21
#> 18/100 risk = 0.19
#> 20/100 risk = 0.18
#> 22/100 risk = 0.17
#> 24/100 risk = 0.17
#> 26/100 risk = 0.16
#> 28/100 risk = 0.16
#> 30/100 risk = 0.16
#> 32/100 risk = 0.15
#> 34/100 risk = 0.15
#> 36/100 risk = 0.15
#> 38/100 risk = 0.15
#> 40/100 risk = 0.15
#> 42/100 risk = 0.15
#> 44/100 risk = 0.15
#> 46/100 risk = 0.14
#> 48/100 risk = 0.14
#> 50/100 risk = 0.14
#> 52/100 risk = 0.14
#> 54/100 risk = 0.14
#> 56/100 risk = 0.14
#> 58/100 risk = 0.14
#> 60/100 risk = 0.14
#> 62/100 risk = 0.13
#> 64/100 risk = 0.13
#> 66/100 risk = 0.13
#> 68/100 risk = 0.13
#> 70/100 risk = 0.13
#> 72/100 risk = 0.13
#> 74/100 risk = 0.13
#> 76/100 risk = 0.13
#> 78/100 risk = 0.13
#> 80/100 risk = 0.13
#> 82/100 risk = 0.13
#> 84/100 risk = 0.13
#> 86/100 risk = 0.12
#> 88/100 risk = 0.12
#> 90/100 risk = 0.12
#> 92/100 risk = 0.12
#> 94/100 risk = 0.12
#> 96/100 risk = 0.12
#> 98/100 risk = 0.12
#> 100/100 risk = 0.12
#>
#>
#> Train 100 iterations in 0 Seconds.
#> Final risk based on the train set: 0.12
#>
plotTensor(cboost, "Sepal.Width_Species_tensor")
plotTensor(cboost, "Sepal.Width_Sepal.Length_tensor")
# }