0-1 Loss for binary classification derived of the binomial distribution
Source:R/RcppExports.R
LossBinomial.Rd
This loss can be used for binary classification. The coding we have chosen here acts on \(y \in \{-1, 1\}\).
Format
S4 object.
Arguments
- offset
(
numeric(1)
|matrix()
)
Numerical value or matrix to set a custom offset. If used, this value is returned instead of the loss optimal initialization.
Details
Loss Function: $$ L(y, f(x)) = \log(1 + \mathrm{exp}(-2yf(x))) $$ Gradient: $$ \frac{\delta}{\delta f(x)}\ L(y, f(x)) = - \frac{y}{1 + \mathrm{exp}(2yf)} $$ Initialization: $$ \hat{f}^{[0]}(x) = \frac{1}{2}\mathrm{log}(p / (1 - p)) $$ with $$ p = \frac{1}{n}\sum\limits_{i=1}^n\mathrm{1}_{\{y^{(i)} = 1\}} $$
Usage
LossBinomial$new()
LossBinomial$new(offset)